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representation in order to calculate the noise of the total extrinsic
transistor. Finally, in Section Ill, comparisons are presented between
calculations and measurements.

Il. FORMALISM FOR DIRECT EXTRACTION OF
HBT's EQUIVALENT CIRCUIT PARAMETERS

The GalnP/GaAs HBT's characterized in this work were fabricated
by GEC Marconi. The authors have investigated single finger devices
with effective emitter area of 3 12 pum® (J;) and 3 x 20
pm? (J:). The metal-organic chemical vapor deposition (MOCVD)
grown device-layer structure consists of a 280GaAs emitter cap
nt-doped (4x 10'*/cn?), two GalnP emitter layers of 208 n*-
doped (2x 10"/cn?®) and of 1000A n-doped (3x 10'7/cnt),
1000A GaAs base layer b -doped (3x 10°/cn?*), 0.5u:m GaAs
pre-collector i -layer doped (18 /cn?®) and 0.7um GaAs collector
n"-doped (2x 10'%/cn?), all grown on a semi-insulating substrate.

The HBT's equivalent circuit used for this paper is the conven-
tionally accepted T model [5]. This circuit is divided in three parts:
the intrinsic part, the part in which the feedback capacitance is taken
into account, and the extrinsic part (each of them represented by the
matrix [Z]:, [Y];, and[Z].), respectively. Scattering parameters have
been measured for different bias points with an HP8720B network
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TABLE |
EXTRACTED ELEMENTS OF THE SMALL SIGNAL EQUIVALENT CIRCUIT AT
DIFFERENT BIAS CONDITIONS, FOR AN EMITTER EFFECTIVE AREA OF 3 X 20 pzm?
e (mAYfIpb(mA)Y] R | L1 |[RB|Cr R L2 |[CE| RO ICO| a 7 | Ro | RE
@ )| @[ (F) | ©@ )| (pF) | k)| (F) @) [ ([ (@)
0 0 ]438 865 1.6 [11.7
1 0.034 6.7259.1 1.66] 36 1160 [0.930]8.79] 2.9 [38.2
2 0.062 5.17 2.94] 23 158 ]0.948]6.22 212
4 0.109 429 5.35] 12 1148 ]0.970{4.72 9.7
6 0.151 32 7.32| 11 [130]0.973]3.89 7.5
8 0.191 27 93 [ 10.5] 143 ]0.975[3.62 5.5
10 0.230 2.44 11.2] 11 [139]0.980]3.28 4.6
[7k] TABLE I

EXTRACTED ELEMENTS OF THE SMALL SIGNAL EQUIVALENT CIRCUIT AT

Fig. 1. Noisy T-like topology small-signal equivalent circuit including therpcrerentBias CONDITIONS, FOR AN EMITTER EFFECTIVE AREA OF 3 X 12 pzm2

mal- and shot-noise generators.

Te(mA)[Ip(mA)| R1 1 L1 {1 RB|CF|R2 [ L2 {CE| RO {CO| a 1 | Ro |RE
Q) (P (@) | (F) [ () |(pH) | (pF) | (k)| (IF) (0s) | () [ ()
. 0 4.1 {579 2.45128.8
analyzer under a probe station from 200 MHz to 18 GHz. The
circuit model (Fig. 1) includes extrinsic parasitic elemefts, L1, L] o029 14.8) 33 1.54| 28 | 11010.946|16.87| 5.2 | 35
R, and L, which represent the access and contact resistances, and | 0.050 12 2.9 15 | 98 [0.972] 5.1 152
inductances of the access lines. Thus, they are bias independent. Ta [ .02 ) 29 12 189 (09841386 7q
obtaln these elements, the transistparameters are measured in ——i+75 = T o 50 tossshia =%
their nonconducting statdy= 0 A, Vi, = 0 V). As a consequence,
. . . 0.140 6.6 7.8 112 75 [0.98212.92 4.2
the resulting expressions are simpler £ 0, R = oc). Access
resistances and inductances are extracted from the following extrinsicto | 0.166 59 10.1110.5] 75 10.972|2.70 2.8
matrix expressions:
[Z11 — Zio]e =R1 + 7S @) « the intrinsic base—collector capacitance:
[Z22 — Zoa]e =R + J32 2) Re R2 Cow
o . . Z22i = Z21i = 13 2J2 —J 73 Qz 2 1)
where it is as shown in (3)—(6) at the bottom of the following RHCHw? +1 RHCHw? +1
age. For frequencies higher than 6 GRz and . are frequenc » _ N
iadge endent gncﬁ' and“g- are linear as a function of fré1 uen():/ whe_rew_ o one hasl/(Im [Z-22 Ll w) = Cas
P 1 andss é ; QUENCY. & the intrinsic base—collector resistance:
Ihus, one can easily dedug¢g ~ R;, &1 = Liw, R, = Ry, and wherew — 0, one hasRe [Zss — Zo1]i = Ro;
32 & Law. ) « the base transport coefficient:
Once one obtains these four access elements, one subtracts them _jwr
from the extrinsic matri{Z], in order to calculate th§/']; admit- a=aoc -
tance matrix, and as a consequence, the feedback capacitance =ap(cos wr — J sin wT)
as 7 i — Z: ¢
_ ZlZ Z21 (12)
o Ri+jLiw 0 _ 027 — L9214
2= (2= [P @ with
with }}'12 = —jC’pw.
The last step of parameter’s extraction is to obtain the bias- ap = ‘lei — Zo1i
dependent elements of the intrinsic impedance mdtrl. Thus, Zyoi — Zoni
one has and

jCrw
—jCrw

—jCrw

jCrw 8)

Then, one transforms tH&"]; matrix into its impedance representa-

tion [Z]; and deduces the following successively:
« the intrinsic base resistance:

=1 - |

RBIRQ[ZM _Zl2]i§ (9)
¢ the intrinsic emitter—base resistance:
Rg R%OEW
Z12i = R - — 10
=t e ez 19

"
wherew — 0, one hasRe [Z12:] — Ro + Re; th
« the intrinsic emitter—base capacitance:

wherew — oo, one hasl/(Im [Z,3;] - w) — Cg; bi

1

(e

Re[Z12i — Z21i]
<Im [Zzzi - Zzu]
—a tan

Im [Z12; — Z21i]

il

)

Finally, to calculateR,, which is bias independent, one plots

Ro + R as a function of the inverse of the emitter curreft ).
The elementR, is then deduced from extrapolation at the origin

nKT
ql.
is the ideality factor of the emitter which is found about 1.1 for
ese devices.

Tables | and Il give the different extracted elements at different
as points.

Ro+ Rr = Ro+ (13)
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Then, the network is transformed in its admittance representation
to which the feedback capacitan€e- is added [see Fig. 2(b)]. Both
—(O current generators and the resultant admittance matrix are expressed
€ [Z]i as follows:
Z =efYu " + 2Re [YuYiseres] + [Yio*e3 (18)
@ 2 =2V |” + 2Re [V Yopere] + [Vau|*e3 (19)
icit = Y51 Yi1€e? + Yoo Yirered + YioYsezsef + YouYi2e2 (20)
*{e}* 7 it =Y Yore + Y7 Yasezel 4 Vo1 Viveres + Vi Vooel.
e [ ]_] B (21)
The above-considereY; ;-parameters belong to tH&]; matrix
© @ S I s o7 (22)
E Yo1 Yao |, =Y Yp |5
: — The [Y]; matrix is transformed into th¢Z]; impedance represen-
I [A] tation with its two series noise voltage generatersand ¢, [see
k Fig. 2(c)], in order to add the parasitic series access elements with
© g:E|Zn|2 +2Re[Z11Z1i.1%] + |le|zg (23)
e - — . . y—
. o o . 2 = 2| Zn |’ + 2Re [Z21Z350c0%) + | Zo2 |32 (24)
Fig. 2. (a) Intrinsic impedance representation with the input and output — - N —
associated voltage noise sourcas and e2, respectively. (b) Intrinsic ad- ey =2 Z11iz + Zas Z1nicts
mittance representation by adding the feedback capacitéheewith the t Z10 75 500F + Z50 71212 (25)
input and output associated current noise souiceand i, respectively. . _ . _
(c) Transformation of the (b) configuration in its impedance representation. esel = Z11 722112 + 21 Zaai it
(d) Influence of the parasitic access base and collector resistances with their + Doy Zhiir + 75, Zﬂg. (26)

associated thermal voltage noise generaforg and E -, respectively. (e)

Chain representation of the extrinsic device with its input associated currerfie above-considered;; parameters belong to tH&], matrix.

and voltage noise sources.

Ill. Noise CALCULATIONS

It is now possible to make a new equivalent circuit including th

. . . . e . ur
different noise sources which have physical significance (Fig. 1).%)

thermal noise source is attributed to the intrinsic base resistance grlr‘?j

The final step of the noise calculations is to obtain the noise of the
total extrinsic transistor. Therefore, th&]; matrix is transformed
into the impedance matrikZ];, and one deduces the two terminal
8eries noise voltage generatdfs and E» by adding the noise voltage
ceser, andegr, associated withR?; and R, respectively [see
2(d)],

to Ro. Furthermore, the model contains two independent shot noise {Zu Ziz} [RL +jLlw 0 — 7 @7)
sources which are both totally uncorrelated. The former is a noise [Z21 Z2z |, 0 Rz +jLaw
voltage generato¢:,, in series with the dynamic emitter resistancgynore
Rg, and the latter is a noise current generatgrin parallel to the = =,
collector junction. Ef =e2 +ep, (28)
The intrinsic part of the device can now be transformed in a @:%4_% (29)
noiseless network with two noise voltage souregsand e» [see —_— —
. . . T E\E} =ecel (30)
Fig. 2(a)]. The following expressions are obtained:
. EyEY =eqef (31)
— _ R 5 € RN _
e?=e% +e% +|Zpl gf (14) with ¢%,, = 4KTR/Af ande},, = AKTRyAf.
- v EQT Nevertheless, in order to obtain the noise parameters directly, it is
ey =ck, + | Zel"ig, +1Zql7i2, (15)  necessary to display the extrinsic network in its chain representation
ey =ch, +1Ze%i%, (16) [see Fig. 2(e)l{Z]x is transformed into the chain matr{x]; and
- = one obtains the final expressions
6261‘ =e1 e,; (17) _ — o—
R - N .E2 :Ef - QRG [‘411ETE2] =+ |¢411|‘E§ (32)
with ¢3, = AKTRoAf, ¢}, = 4KTRpAf, ¢}, = 2KTRpAf, 7 = |4 [E2 (33)
and 2, = [2KT(«w — |a|*)/Re]Af [6], Zr and Zg are the v 21* > § jp—
impedance of the emitter—base and base—collector junctions, respec- EI" =—As B E5 + AHAHE (34)
tiVe'y. IE* = —Ag EzEf -+ AzlAT1 Er_f (35)
Ry = Ry 4 RB(l — RBCFRQCQ;:JZ) =+ BBRQCQ(RQCQ + RQCF + RBCF)UJZ (3)
te (1— ReCrRoCow?)® + (RoCq + RoCr + ReCr)2w?
3 =Liwt RpRoCow(1 — RBCFRQCQLUZ) — R(RoCq + RoCr + ReCr)w 4)
DA (1-— RBOFRQCQMZ)Q + (RQOQ + RQCF + RBC(F)ZLUZ
. RQ(].—RBCFRQCQUJZ)
R =Ry + 5 5
? 2 (1- RCrRqCow?)?+ (RoCo + RoCr + RCr)?w? ©)
3y = Low + —Ro(RoCo+ RoCr + ReCr)w ©)

(1 — RBCFRQCQLUZ)Z + (RQCQ + RQCF + RBCF)QLUZ
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Fig. 3. Comparisons between calculated and measured minimum noise figure 4 6 8 10 12 14 16 18
Fin versus collector current. at frequencyf = 10 GHz, for two different F (GH2)

geometriesde = 3 x 12 um? (J1) andAe = 3 x 20 um? (Jz2).

Fig. 4. Comparisons between calculated and measured minimum noise figure
Fnin versus frequency at a collector currdiit= 10 mA, for two different

The four noise parameters are derived from geometriesde = 3 x 12 um? (J;) and Ae = 3 x 20 um? (Ja).
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. . . . Fig. 5. Comparisons between calculated and measured equivalent noise
R, is the eqUIvalgnt noise resistance of the_de"@@fpt andBop_t resistancel,, versus frequency at a collector curreit= 10 mA, for two
[7] are the real and imaginary parts of the optimum input admittanaéferent geometriest, = 3 x 12 um? (J1) and 4. = 3 x 20 um? (J2).

to obtain the minimum noise figure.

emitter—base resistance is inversely proportional to the emitter current
IV." RF NOISE PERFORMANCES and, as a consequence, it affects the téfm

The noise figure measurements were performed using an HP8970Big. 4 showsF,..;» as a function of frequency at a nominal bias
noise figure meter. The test set included a coaxial single slug ingixed by the constructod{ = 10 mA). The noise figure approaches a
tuner for measuring the minimum noise figutg..). linear law. The agreement is 0.3 dB over the whole frequency range.

Fig. 3 compares noise calculations and measuremens,ef as  This can be attributed to the fact that.. is very sensitive to the
a function of the collector current dt.. = 1.5 V and f = 10 emitter and base resistances, thus it depends on the accuracy of the
GHz. One notices that the method previously developed allows tharameters extraction.
minimum of F...;» to be located with good precision. One obtains an Fig. 5 presents the equivalent noise resistalige A good agree-
Fiin of about 2.5 dB atf, = 2.8 mA (J;) andI. = 4 mA (J1). ment is observed between measurements and the modelization, even
The decrease dfmin in the collector current range from 0 to 3 mAif R, seems to be the most difficult parameter to obtain because of
is due to the slight decrease Bfs as the collector current increasesthe uncertainty ofS-parameter measurements.
This implies that its associated thermal noise also diminishes. On théd-igs. 6 and 7 display the optimum input impedance magnitude
other hand, the positive slope &f.in (I. = 3 to 10 mA) is related and phase, respectively, which are both linear as a function of
to the increasing contribution of the shot noise. In fact, the dynamfiequency.
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avoiding the noise measurements which are quite difficult to per-
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